1. Introduction
The perfect graphite and carbon nanotube (CNT) are composed of hexagonal rings of carbon atoms. However, non-hexagonal rings like pentagons and heptagons usual exist in the realistic CNT. Due to the change of topology, different arrangements of the pentagons and heptagons would lead to various structures, such as CNTs with Stone-Wales defects [1], CNT junctions [2], toroidal CNTs [3], and coiled CNTs [4, 5]. Each type of these CNT-based structures has its unique physical and chemical properties; as a consequence, the diversity in morphology extends the applications of CNTs. In this chapter, we will review the current progress on two important members of the CNT family, i.e., the toroidal CNTs at the first and coiled CNTs in the second.
The toroidal CNT (also known as carbon nanotorus or carbon nanoring) is a kind of zero-dimensional CNT-based nanostructure. In other words, a carbon nanotorus can be considered as a giant molecule and directly used as a nanoscale device. As for the synthesis of the toroidal CNTs, numerous methods have been proposed, including laser-growth method, ultrasonic treatments, organic reactions, and chemical vapour deposition (CVD), which will be illustrated in the following. In addition to experimental synthesis, various theoretical efforts have been devoted to construct the structural models of the toroidal CNTs. In general, there are two kinds of toroidal CNTs: one is formed by pristine nanotube with pure hexagon networks, and the other contains certain amount of pentagon and heptagon defects. Due to the circular geometry of the carbon nanotorus and incorporation of pentagon/heptagon defects, it may exhibit novel mechanical, electronic and magnetic properties different from the straight CNTs.
Another kind of curved CNT-based nanostructure is the coiled CNT, which is also known as carbon nanocoil or carbon nanospring. Different from the zero-dimensional toroidal CNT, the coiled CNT is a kind of quasi one-dimensional CNT-based nanostructures with a certain spiral angle. Intuitionally, a carbon nanocoil is like a spring in geometry. Therefore, mechanic properties of the coiled CNTs attract lots of attentions. Among various methods to produce the coiled CNTs, CVD approach is predominant due to the high quality and good controllability. Besides, several methods have been proposed to build the structural models of the coiled CNTs. An important feature of the carbon nanocoil models is the periodic incorporation of pentagons and heptagons in the hexagonal network. In addition, due to the excellent properties of the coiled CNTs, they have promising applications in many fields, such as sensors, electromagnetic nano-transformers or nano-switches, and energy storage devices.
2. Toroidal CNTs
In this section, we summarize experimental fabrication and theoretical modelling of the toroidal CNTs, as well as their physical and chemical properties. The toroidal CNTs are predicted to be both thermodynamic and kinetically stable. Due to the circular geometry, the toroidal CNTs possess excellent properties, especially the electronic and magnetic properties.
2.1. Fabrication
Synthesis and characterization of the toroidal CNTs are of key importance in the carbon nanotorus related fields. Early in 1997, Liu et al. reported synthesis of the toroidal CNTs with typical diameters between 300 and 500 nm by using the laser growth method [3]. From the measurement of scanning force microscopy (SEM) and transmission electron microscopy (TEM), it was shown that the toroidal CNTs were form by single-walled carbon nanotube (SWNT) ropes consisting of 10 to 100 individual nanotubes. Soon after, the toroidal CNTs were also found in the CNT samples prepared by catalytically thermal decomposition of hydrocarbon gas [6] and an ultrasound-aided acid treatment [7, 8]. Later, a variety of experimental approaches were developed to fabricate carbon nanotori, such as organic reactions [9, 10], chemical vapor deposition (CVD) [11, 12], and depositing hydrocarbon films in Tokamak T-10, the facility for magnetic confinement of high-temperature plasma [13]. In addition, incomplete toroidal CNTs [13, 14], large toroidal CNTs with diameters of~200–300 nm, sealed tubular diameters of 50–100 nm [15], and patterning of toroidal CNTs [16, 17] were also achieved in laboratory. In particular, the tubular diameter of a carbon nanotorus is now controllable. Toroidal CNTs from single-walled [7-10, 18, 19], double-walled [20], triple-walled [21], and multi-walled CNTs [6] have been achieved. Combining the experimental measurements and a simple continuum elastic model, formation of the toroidal CNTs was supposed to involve a balance between the tube-tube van der Waals adhesion, the strain energy resulting from the coiling-induced curvature and the strong interaction with the substrate [8, 14]. Various kinds of the toroidal CNTs are presented in Figure 1.
2.2. Structural models and thermodynamic stabilities
Prior to the experimental synthesis, Dunlap proposed to construct the structural model of a carbon nanotorus by connecting two CNTs with different diameters [22]. Almost at the same time, researchers in Japan built a C360 nanotorus from C60 fullerene [23] and then generated a series of toroidal CNTs with 120 to 1920 carbon atoms using the prescription of Goldberg [24, 25]. So far, there have been six major approaches to construct the structural models of toroidal CNTs: (1) bending a finite CNT and connecting its ends together [26-29]; (2) connecting CNTs with different diameters by introducing pentagons and heptagons [22, 30-32]; (3) constructing from fullerenes [23-25] by employing the prescription of Goldberg [33]; (4) built through the connection of one zigzag-edged chain of hexagons and another armchair-edged chain of hexagons [34]; (5) sewing the walls of a double-walled CNT at both ends [35]; (6) constructing from only pentagons and heptagons [36]. To summarize, there are two kinds of toroidal CNTs: one is formed by pure hexagonal networks and the other is a hexagonal structure with pentagon-heptagon defects. In a more detailed way, Itoh et al. classified the toroidal CNTs into five types using the parameters of the inner (ri) and outer (ro) diameters, and the height (h) [37]. As depicted in Figure 2, type (A) indicates a nanotorus with ri ≈ ro, h << ri, and h ≈ (ro - ri), type (B) is the case of ri ~ ro ~h and h ≈ (ro̶ri), type (C) denotes h << (ro̶ ri), type (D) is the case of ri< ro, ro ~ h, and h ~ (ro̶ ri), and type (E) means (ro̶ ri) << h, respectively.
After establishing the structural models, one important issue is to examine the thermodynamic stabilities of the toroidal CNTs. Many groups demonstrated that toroidal CNTs are more stable than C60 fullerene through comparing their binding/cohesive energies calculated by means of empirical potential methods [22-25]. Besides, molecular dynamics (MD) simulations also demonstrated that toroidal CNTs can survive under high temperature [23, 29, 38, 39]. Generally, the thermodynamic stability of a carbon nanotorus depends on its geometric parameters, such as ring and tubular diameter, symmetry, curvature, and position of the pentagons and heptagons. Ihara et al. showed that the cohesive energy of a carbon nanotorus derived from C60 fullerene decreased with increasing number of carbon atoms in the carbon nanotorus [24]. The ring and tubular diameter can also affect the thermodynamic stability of a carbon nanotorus [40-42]. At a fixed tubular diameter, there was a preferable ring diameter where the nanotorus possesses the lowest formation energy [40]. Besides, dependence of the stability on the rotational symmetry was also reported for the toroidal CNTs [32, 37]. Among the toroidal CNTs constructed from (5, 5), (6, 6), and (7, 7) armchair CNTs, the one with D6h symmetry is energetically favourable [32]. Despite the dependence on the geometric details, it was believed [43, 44] that for the toroidal CNTs with large ring diameters, the pure hexagonal structure is energetically more stable, but for the ones with small ring diameters, the mixture of hexagonal networks and pentagon-heptagon defects is energetically more favourable. In [44], this critical ring diameter is given by the equation Rc = πr2Y/(4σ), where r is the tubular diameter of the initial CNT, Y is the Young’s modulus of the initial CNT, and σ is the surface tension of graphite perpendicular to the basal planes. For example, taking the Y = 1.0 TPa, a Rc of 90 nm can be obtained for a carbon nanotorus made of a (10,10) nanotube (r = 0.68 nm).
2.3. Mechanical properties
Mechanical property is of fundamental importance for the applications of a material. Employing MD simulation with a reactive force field, Chen et al. investigated the mechanical properties of zero-dimensional nanotorus, one-dimensional nanochain and two-dimensional nanomaile constructed from toroidal CNTs [45]. For a nanotorus constructed from bending a (5, 5) CNT, its Young’s modulus increases monotonically with tensile strain from 19.43 to 121.94 GPa without any side constraints and from 124.98 GPa to 1560 GPa with side constraints, respectively, where the side constraint means fixing the position of small regions of carbon atoms at left and right sides. Besides, the tensile strength of the unconstrained and constrained nanotorus was estimated to be 5.72 and 8.52 GPa, respectively. In addition, the maximum elastic strain is approximate 39% for the nanochain and 25.2% for thenanomaile. For a nanotorus obtained from bending a (10, 10) CNT, its Young’s modulus along the tube axis was 913 GPa by taking [46]. Later, buckling behavior of toroidal CNTs under tension was investigated using the molecular mechanics (MM) computations, including the toroidal CNTs formed from (5, 5), (8, 8) and (9, 0) CNTs [47, 48]. It was found that the buckling shapes of the toroidal CNTs constructed from both armchair and zigzag CNTs with an odd number of units are unsymmetrical, whereas those with an even number of units are symmetrical. Recently, reversible elastic transformation between the circular and compressed nanotorus in a colloid has been observed under TEM [17]. This geometric reversibility was also predicted theoretically by using a nonlinear continuum elastic model [49, 50], suggesting the potential application of toroidal CNTs as ultrasensitive force sensors and flexible and stretchable nanodevices.
2.4. Electronic properties
It is well-known that a CNT can be expressed by a chiral vector Ch (n, m) and a translation vector T (p, q) and can be either metallic or semiconducting, depending on its chirality [51]. Since a carbon nanotorus can be considered as a bended CNT or a CNT incorporated with pentagons and heptagons, it would be interesting to explore will the bending behavior or inclusion of pentagons and heptagons affect the electronic properties of the pristine CNT. For a carbon nanotorus formed by bending a (n, m) CNT, it can be divided into three types: (1) if m ‒ n = 3i, and p ‒ q = 3i (i is an integral), the carbon nanotorus is metallic; (2) if m ‒ n = 3i, and p ‒ q ≠ 3i, the carbon nanotorus is semiconducting; (3) if m ‒ n ≠ 3i, and p ‒ q = 3i, the carbon nanotorus is insulating [52]. This classification was partly confirmed by the tight-binding (TB) calculation that a metallic carbon nanotorus can be constructed by bending a metallic CNT and also follows the rule of divisibility by three on the indices of chiral and twisting vectors [53]. Moreover, delocalized and localized deformations play different roles on the electronic properties of a carbon nanotorus built bending a CNT [27]. The delocalized deformations only slightly reduce the electrical conductance, while the localized deformations will dramatically lower the conductance even at relatively small bending angles. Here the delocalized deformation means the deformation induced by the mechanical bending of the CNT, and the localized deformation indicates the deformation induced by the pushing action of the tip of AFM. In addition, Liu et al. reported the oscillation behavior of the energy gap during increasing size of the nanotorus and the gap was eventually converged to that of the infinite CNT [54].
Meanwhile, in the case of incorporation of pentagons and heptagons, a HOMO-LUMO gap can be expected for the carbon nanotorus. For a carbon nanotorus C1960 constructed by connecting (6, 6) and (10, 0) CNTs, a gap of 0.05 eV was calculated by a TB approach [44]. Using both the TB and semiempirical quantum chemical approaches, a series of toroidal CNTs with total number of atoms ranging from 120 to 768 were investigated and most of them have HOMO-LUMO gaps [55]. Besides, employing the extended-Hückel method, energy gaps of 0.4-0.32µB eV were predicted for the toroidal CNTs of C170, C250, C360, C520, and C750 [56]. Further accurate DFT examination also showed that the nanotorus C444 has a gap of 0.079 eV and the nanotorus C672 has a gap of 0.063 eV, respectively [57].
2.5. Magnetic properties
The unique circular geometry endows its advantage to study the magnetic response when ring current flows in a carbon nanotorus. Early in 1997, Haddon predicted that the nanotorus C576 has an extremely large and anisotropic ring-current diamagnetic susceptibility, which can be 130 times larger than that of the benzene molecule [58]. Afterwards, colossal paramagnetic moment was also reported in the metallic toroidal CNTs, which was generated by the interplay between the toroidal geometry and the ballistic motion of the π-electrons [28], as shown in Figure 3. For example, the nanotorus C1500 built from a (5, 5) CNT possesses a large paramagnetic moment of 88.4 µB at 0 K. Similarly, the nanotorus C1860 built from a (7, 4) CNT has a giant zore-temperature magnetic moment of 98.5 µB. In addition to the paramagnetic moments, existence of ferromagnetic moments at low temperatures in the toroidal CNTs without heteroatoms was also predicted by using a π-orbital nearest-neighbor TB Hamiltonian with the London approximation, which is attributed to the presence of pentagons and heptagons [59]. Another important phenomenon, i.e., the Aharonov–Bohm effect can be also observed in the toroidal CNTs [60-64]. Indeed, the magnetic properties of the toroidal CNTs are affected by many factors. Liu et al. pointed out that the paramagnetic moments of the toroidal CNTs decrease distinctly as temperature increases [28]. Such temperature dependence was also confirmed by several successive studies [65-68]. Moreover, the magnetic properties of a toroidal CNT also rely on its geometric parameters, such as ring diameter, curvature, chirality, and the arrangement of pentagons and heptagons [65-67].
2.6. Modification of the toroidal CNTs
Chemical modification is an important approach to tailor the properties of materials. A common approach of chemical modification is doping. It was found that doping electrons or holes into a carbon nanotorus could vary its magnetic properties through altering the band-filling configuration [69]. Our previous work also demonstrated that substitutional doping of boron or nitrogen atoms could modify the electronic properties of the toroidal CNTs due to change of the six π-electron orbitals [32]. Moreover, compared with the hexagonal rings, existence of pentagons favours the doping of nitrogen atoms and existence of heptagons prefers the doping of boron atoms. Besides, the toroidal CNTs coated with beryllium can be used as candidates for hydrogen storage. Each beryllium atom can adsorb three H2 molecules with moderate adsorption energy of 0.2-03 eV/H2 [70].
Since the toroidal CNTs also have the hollow tubular structures similar to the CNTs, atoms or molecules can be encapsulated into the toroidal CNTs. Early in 2007, Hilder et al. examined the motion of a single offset atom and a C60 fullerene inside a carbon nanotorus to explore its application as high frequency nanoscale oscillator [71]. They demonstrated that the C60 fullerene encapsulated carbon nanotorus can create high frequency up to 150 GHz, which may be controlled by changing the orbiting position. By inserting the chains of Fe, Au, and Cu atoms into a carbon nanotorus, Lusk et al. investigated the geometry, stability and electronic magnetic properties of this nano-composite structure [72]. Reduced HOMO-LUMO gap and ferromagnetism of the nanotorus were predicted by encapsulating chains of metal atoms. In addition, diffusion behavior of water molecules forming two oppositely polarized chains in a carbon nanotorus was studied by MD simulations. It was demonstrated that Fickian diffusion is in the case of a single chain and the diffusion for two or more chains is consistent with single-file diffusion [73].
3. Coiled carbon nanotube
Similar to the case of the toroidal CNTs, we first introduce the experimental synthesis and theoretical methods to construct the structural models, as well as their formation mechanism and stabilities. Then the mechanic properties and electronic properties of the coiled CNTs are summarized. Finally, the promising applications of coiled CNTs in various fields compared with their straight counterparts owing to their spiral geometry and excellent properties will be discussed in the end of this section.
3.1. Fabrication and formation mechanism
The coiled CNTs were first experimentally produced through catalytic decomposition of acetylene over silica-supported Co catalyst at 700 °C in 1994 [4, 5]. Afterwards, numerous methods have been proposed to synthesize the coiled CNTs, including the laser evaporation of the fullerene/Ni particle mixture in vacuum [74], opposed flow flame combustion of the fuel and the oxidizer streams [75], electrolysis of graphite in fused NaCl at 810 °C [76], self-assembly from π-conjugated building blocks [77, 78], and CVD method [79-83]. Among these various methods, the CVD approach is predominant due to its high quality, which has been reviewed by several literatures [84-86]. To fabricate the coiled CNTs, CVD process involves the pyrolysis of a hydrocarbon (e.g. methane, acetylene, benzene, propane) over transition-metal catalysts (e.g. Fe, Co, Ni) at high temperatures. Compared to the high growth temperature (> 2000 °C) of CNT through arc discharge and laser evaporation process, the relatively low growth temperature of CVD method (500–1000 °C) allows carbon atoms move slowly and form non-hexagonal carbon rings [84]. In 2006, Lau et al. reviewed the three major CVD-based methods to fabricate the coiled CNTs, including the catalyst supported CVD growth, on substrate CVD growth and template-based CVD growth [84]. Later, synthetic parameters of CVD growth of the coiled CNTs, such as catalyst, gas atmosphere and temperature, were introduced and catalogued by Fejes et al. [85] and Shaikjee et al. [86], respectively. Moreover, Shaikjee et al. [86] presented different types of the coiled CNTs with non-linear morphology, which are shown in Figure 4.
As for the formation mechanism of the coiled CNTs, Fonseca et al. presented a formation of (chiral and achiral) knees on a catalyst particle to further form toroidal and coiled CNTs, which can be described by a simple formalism using the heptagon-pentagon construction [87]. In addition, formation of the coiled CNTs is closely related to the catalyst. Pan et al. suggested that the catalyst grain is crucial to the geometry of a carbon nanocoil and the nonuniformity of carbon extrusion speed in the different parts of the catalyst grain leads to the helical growth of the coiled CNTs [88]. Chen et al. pointed out that the driving force of coiling straight CNTs was the strong catalytic anisotropy of carbon deposition between different crystal faces [89]. For growth of carbon microcoils, the catalyst grain rotates around the coil axis which is on the symmetric face of the deposition faces; while for the twisted carbon nanocoils, the catalyst grain rotates around the axis which is perpendicular to the symmetric face of the deposition faces. Taking both the energy and entropy into account, Bandaru et al. proposed a mechanism that for a given volume of material, the helical form occupies the least amount of space and the entropy of the ambient conditions should increase to compensate for the close packing of the helices, which in turn is facilitated by nonwetting catalyst particles or induced by catalyst/ambient agitation in the CVD growth [90].
3.2. Structural models and thermodynamic stabilities
An important feature of a carbon nanocoil is incorporation of pentagons and heptagons in the hexagonal network. Dunlap [22, 91] showed that connecting two CNTs with pentagons and heptagons could result in a curved structure or knee structure. Based on the knee structure, Fonseca et al. was able to construct the toroidal and coiled CNTs using the knee segments as building blocks, where the former is an in-plane structure and the latter is out of plane [92]. In addition, researchers in Japan proposed two kinds of methods to construct structures of the coiled CNTs. One approach is to cut the toroidal CNTs into small pieces and recombine them to form the coiled CNTs with one pitch containing one nanotorus [37, 93]. For the coiled CNTs built from toroidal segments, Setton et al. suggested that the toroidal segments were only feasible for single-shell or at best two-shell nanocoils [94]. The other way is to insert pentagons and heptagons into a perfect graphene network and then roll up this structure to form a carbon nanocoil [95, 96]. Similarly, Birό et al. proposed to build the coiled CNTs from rolling up the Haeckelite structure, a graphite sheet composed of polygonal rings [97]. Recently, we were able to construct the carbon nanocoils from segment of CNTs in which the tube chirality is maintained [98]. Through introducing a pair of pentagons in the outer side and another pair of heptagons in the inner side into the segment of an armchair CNT, a curved structure can be obtained. Using this curved structure as a building block, a carbon nanocoil can be formed by connecting the building blocks with a rotate angle. This method was also employed to construct the structural models of the toroidal CNTs, as mentioned above [32]. A simple schematic diagram of this method is presented in Figure 5. Usually, a carbon nanocoil can be expressed by the parameters of inner coil diameter (Di), outer coil diameter (Do), tubular diameter (Dt) and coil pitch (λ) [84, 86], as illustrated in Figure 6.
In addition to the structural models of the coiled CNTs, several works have been devoted to investigating their thermodynamic stabilities. Employing MD simulation, Ihara et al. [93] obtained the cohesive energies of 7.41, 7.39 and 7.43 eV/atom for C360, C540 and C1080 nanocoils, respectively, which are close to that of graphite sheet (7.44 eV/atom) and lower than that of the C60 fullerene (7.29 eV/atom). Therefore, these carbon nanocoils are more stable than C60 fullerene. Moreover, these carbon nanocoils can maintain the coiled geometry without collapse at a temperature up to 1500 K, which further confirms their thermodynamical stability. By taking into account the volume free energy, the surface energy, and the curvature elastic energy, it was found that there is a threshold condition for the formation of straight multiwall CNTs [99]. Below that the straight multiwall CNTs become unstable and would undergo a shape deformation to form the coiled CNTs.
3.3. Mechanical properties
Intuitively, a carbon nanocoil is similar to a spring in geometry. It is well-known that spring exhibits excellent mechanic properties and is very useful in the mechanics-based devices. Therefore, mechanical properties of the coiled CNTs as “nanospring” have attracted lots of attentions. Early in 2000, Volodin et al. measured the elastic properties of the coiled CNTs with atomic force microscopy (AFM) and showed that the coiled CNTs with coil diameters (> 170 nm) possess high Young’s modulus of 0.4–0.9 TPa [100]. Using a manipulator-equipped SEM, Hayashida reported the Young’s modulus of 0.04–0.13 TPa and the elastic spring constants of 0.01–0.6 N/m for the coiled CNTs with coil diameters ranging from 144 to 830 nm [101]. Remarkable spring-like behavior of an individual carbon nanocoil has been demonstrated by Chen et al. [102], as presented in Figure 7. A spring constant of 0.12 N/m in the low-strain regime and a maximum elastic elongation of 33% were obtained from AFM measurement. In contrast to the high measured Young’s modulus, the shear modulus of the coiled CNTs is extremely low. Chen et al. [102] considered the coiled CNTs with a Do of ~126±4 nm but different Di. For the case of Di = 3/4 Do, a shear modulus of ~2.5±0.4 GPa was estimated; if Di = 1/2 Do, the corresponding shear modulus was ~2.3±0.4 GPa; and if Di = 0, a shear modulus of ~2.1±0.3 GPa can be obtained. Afterwards, Huang [103] studied the coiled CNTs under uniaxial tension in simple explicit expressions and obtained a maximum elastic elongation of ~30%, a shear modulus of 2.8–3.4 GPa and a spring constant of ~0.1–0.4 N/m for the double nanocoils formed by twisting two single nanocoils, which is comparable to the experimental result [102]. Later, Chang et al. reported a shear modulus of 3±0.2 GPa for the double coiled CNTs [104]. In addition, Poggi et al. demonstrated the compression behavior of the coiled CNTs and presented that repeated compression/buckling/decompression of the nanocoil was very reproducible with a limiting compression of 400 nm [105].
In addition to the experimental measurements, numerous theoretical simulations were carried out to investigate the mechanical properties of the coiled CNTs. Using the Kirchhoff rod model, Fonseca et al. derived a series of expressions to obtain the Young’s modulus and Poisson’s ratios for the coiled CNTs. Taking the parameters for the carbon nanocoil reported by Chen et al. [102], Fonseca et al. estimated the Young’s modulus of 6.88 GPa for a nanocoil with a coil diameter of 120 nm, a Poisson’s ratio of 0.27 and a shear modulus of 2.5 GPa [106, 107]. Besides, equations were derived to calculate the elastic constants of the forests of the coiled CNTs, which shows that the entanglement among neighboring nanocoils will contribute to the mechanical properties of the nanocoil forests [108]. Employing the DFT and TB calculations, we computed the Young’s modulus and elastic constant of a series of single-walled carbon nanocoils built from the armchair CNTs [98]. The Young’s modulus ranges from 3.43 to 5.40 GPa, in good agreement with the Fonseca’s reports [106, 107] and the elastic constant lies between 15.37 to 44.36 N/m, higher than the experimental values [100, 102]. Furthermore, superelastic behavior of the coiled CNTs was also predicted from our computations where the coiled CNTs can undertake an elastically tensile strain up to ~60% and compressive strain up to ~20–35%. Such superelasticity is due to the invariance of bond length under strain associated with the strong covalent C-C bonding. In a recent computation on the mechanic properties of the single-walled carbon nanocoils using the finite element ANSYS code, spring constants ranging from 15–30 N/m were obtained for the armchair carbon nanocoils with different tubular diameters [109]. As the tubular diameter increases, the spring constant increases accordingly. Generally speaking, the calculated Young’s modulus and elastic constants for the coiled CNTs are more or less different from that of the experimental measurements. This difference may be attributed to the structural details of the synthesized carbon nanocoils, especially the larger sizes of experimental nanocoil samples.
3.4. Electronic and transport properties
Similar to the toroidal CNTs, pentagons and heptagons exist in the coiled CNTs, which may lead to different electric properties with regard to that of the pristine CNTs. Using the two and four probes methods, Kaneto et al. measured the electric conductivity of the micro carbon nanocoils, which lies in 30–100 S/cm [110]. Later, it was found that for a carbon nanocoil with a coil diameter of 196 nm and a length of 1.5 mm, the conductivity is about 180 S/cm [101], which is much smaller than a straight CNT (~104 S/cm) [111]. Recently, Chiu et al. reported a very high conductivity of 2500 S/cm and an electron hopping length of ~5 nm for the single carbon nanocoils measured at low temperature [112]. An even higher electron hopping length of 5–50 nm was predicted by Tang et al. [113]. Moreover, the temperature dependence of the electric resistance was also observed where resistivity of the carbon nanocoil decreases as the annealing temperature increases [114]. Therefore, the measured electric properties of the coiled CNTs are closely related to the temperature and details of the samples.
Theoretically, employing a simple TB model, Akagi et al. [95, 96] calculated the band structures and electron density of states of the carbon nanocoils and suggested that the coiled CNTs could be metallic, semiconducting and semimetallic, depending on the arrangement of the pentagons and heptagons. Compared with the pristine CNTs, the semimetal property is unique for the carbon nanocoil [96]. Recently, we investigated the electric conductance of a series of armchair carbon nanocoils through using a π-orbital TB model combined with the Green’s function approach [115]. Using the metallic armchair CNTs as the electrodes, we calculated the quantum conductance of the (5, 5), (6, 6) and (7, 7) carbon nanocoils, as presented in Figure 8. Clearly, there is a transport gap in the conductance spectrum. Further analysis of the electronic states indicates that only incorporation of pentagons and heptagons (such as Stone-Wales defects) can not lead to gap opening, and thus creation of the band gap should be attributed to the existence of sp3 C-C bonds caused by coiling the CNTs. In addition, change of quantum conductance for the armchair carbon nanocoils under uniaxial elongation or compression is not distinct due to the nearly invariant bond length under strain, i.e. superelasticity [98].
3.5. Applications
Owing to the spiral geometry and unusual properties, the coiled CNTs have promising applications in various fields compared with their straight counterparts [84-86, 116]. One important application of the carbon nanocoils is to act as the sensors. In 2004, Volodin et al. [117] reported the use of coiled nanotubes as self-sensing mechanical resonators, which is able to detect fundamental resonances ranging from 100 to 400 MHz, as illustrated in Figure 9. The self-sensing carbon nanocoil sensors are sensitive to mass change and well suited for measuring small forces and masses in the femtogram range. After measuring the mechanical response of the coiled CNTs under compression using AFM, Poggi et al. pointed out that a nonlinear response of the carbon nanocoil can be observed, which is associated with compression and buckling of the nanocoil [105]. Bell et al. demonstrated that the coiled CNTs can be used as high-resolution force sensors in conjunction with visual displacement measurement as well as electromechanical sensors due to the piezoresistive behavior without an additional metal layer [118]. Besides, the applications of carbon nanocoils as magnetic sensors [119], tactile sensors [120], and gas sensors [121] were also exploited.
Another kind of major applications of the carbon nanocoils is to form composites with other materials. It was found that incorporation of carbon nanocoils in epoxy nanocomposites can enhance the mechanic properties of the epoxy nanocomposites [122-125]. Besides, the coiled CNT/silicone–rubber composites show high resistive sensitivity, relying on the density of the carbon nanocoil [126, 127]. In addition, metal-coated carbon nanocoils can also display some properties different from the pristine coiled CNTs. Tungsten-containing carbon nanocoils can expand and contract as flexibly as macro-scale springs and the elastic constants of the tungsten-containing carbon nanocoils rises along with increasing content of tungsten [128]. Bi et al. [129] found that the coiled CNTs coated with Ni have enhanced microwave absorption than the uncoated ones, which is results from stronger dielectric and magnetic losses.
In addition, field emission [79, 130], energy storage [131, 132] and biological applications [133] of the coiled CNTs were also reported. Nowadays, the coiled CNT have been used as sensors [117-121], flat panel field emission display [79], microwave absorbers [134] and additives in the cosmetic industry [86].
4. Conclusion
Experimental fabrication and theoretical modelling of the toroidal and coiled CNTs were reviewed in this chapter. Compared with the pristine CNTs, the zero-dimensional toroidal CNTs exhibit excellent electromagnetic properties, such as persistent current and Aharonov–Bohm effect. Moreover, electronic properties of the toroidal CNTs can be tuned by chemical modification. In contrast to the toroidal CNTs, the coiled CNTs are quasi one-dimensional CNT-based nanostructures. Due to the spring-like geometry, the coiled CNTs possess fascinating mechanical properties, which are known as superelastic properties. This superelasticity allows the carbon nanocoils to act as electromechanical, electromagnetic, and chemical sensors. In addition, the coiled CNTs have been used commercially to fabricate flat panel field emission display, microwave absorbers and cosmetics.
As mentioned above, the toroidal CNTs synthesized experimentally are usually formed by the bundle of single-walled CNTs and have large ring diameters. Therefore, fabrications of the single-walled toroidal CNTs, as well as the toroidal CNTs of controllable ring diameters, are great challenges. Moreover, achievement of inserting atoms/molecules into the toroidal CNTs is another key issue under solution. On the other hand, since the formation mechanism of the coiled CNTs depends closely on the catalysts, searching for the optimal catalysts is significant for the quality and quantity of the nanocoil samples. Besides, finding appropriate geometry and concentration of the coiled CNTs is also necessary to improve performance of nanocomposites with the carbon nanocoils. Further experimental and theoretical works are expected to carry out to solve these problems.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (No. 11174045, No. 11134005).
References
- 1.
hang P. Lammert P. E. Crespi V. H. 1998 Plastic Deformations of Carbon Nanotubes 81 24 5346 5349 - 2.
Yao Z. Postma H. W. C. Balents L. Dekker C. 1999 Carbon nanotube intramolecular junctions 402 6759 273 276 - 3.
Liu J. Dai H. J. Hafner J. H. Colbert D. T. Smalley R. E. Tans S. J. Dekker C. 1997 Fullerene’crop circles. 385 6619 780 781 - 4.
Amelinckx S. Zhang X. B. Bernaerts D. Zhang X. F. Ivanov V. Nagy J. B. 1994 A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes. 265 5172 635 639 - 5.
Zhang X. B. Zhang X. F. Bernaerts D. Tendeloo G. v. Amelinckx S. Landuyt J. v. Ivanov V. Nagy J. B. Ph L. Lucas A. A. 1994 The Texture of Catalytically Grown Coil-Shaped Carbon Nanotubules. 27 2 141 146 - 6.
Ahlskog M. Seynaeve E. Vullers R. J. M. Van Haesendonck C. Fonseca A. Hernadi K. B. Nagy J. 1999 Ring formations from catalytically synthesized carbon nanotubes. 202 - 7.
Martel R. Shea H. R. Avouris P. 1999 Rings of single-walled carbon nanotubes. 398 6725 299 299 - 8.
Martel R. Shea H. R. Avouris P. 1999 Ring Formation in Single-Wall Carbon Nanotubes 103 36 7551 7556 - 9.
Sano M. Kamino A. Okamura J. Shinkai S. 2001 Ring Closure of Carbon Nanotubes. 293 5533 1299 1301 - 10.
Geng J. Ko Y. K. Youn S. C. Kim Y. H. Kim S. A. Jung D. H. Jung H. T. 2008 Synthesis of SWNT Rings by Noncovalent Hybridization of Porphyrins and Single-Walled Carbon Nanotubes. 112 32 12264 12271 - 11.
Song L. Ci L. J. Sun L. F. Jin C. Liu L. Ma Liu W. Zhao D. Luo X. Zhang S. Xiang Z. Zhou Y. Zhou J. Ding W. Wang Y. Z. L. Xie S. 2006 Large-Scale Synthesis of Rings of Bundled Single-Walled Carbon Nanotubes by Floating Chemical Vapor Deposition. 18 14 1817 1821 - 12.
Zhou Z. Wan D. Bai Y. Dou X. Song L. Zhou W. Mo Y. Xie S. 2006 Ring formation from the direct floating catalytic chemical vapor deposition. 33 1 24 27 - 13.
Kukushkin A. B. Neverov V. S. Marusov N. L. Semenov I. B. Kolbasov B. N. Voloshinov V. V. Afanasiev A. P. Tarasov A. S. Stankevich V. G. Svechnikov N. Y. Veligzhanin A. A. Zubavichus Y. V. Chernozatonskii L. A. 2011 Few-nanometer-wide carbon toroids in the hydrocarbon films deposited in tokamak T-10. 265 268 - 14.
Wang X. Wang Z. Liu Yq. Wang C. Bai C. Zhu D. 2001 Ring formation and fracture of a carbon nanotube 339 1-2 36 40 - 15.
Lyn M. E. He J. Koplitz B. 2005 Laser-induced production of large carbon-based toroids. 246 1-3 44 47 - 16.
Motavas S. Omrane B. Papadopoulos C. 2009 Large-Area Patterning of Carbon Nanotube Ring Arrays. 25 8 4655 4658 - 17.
Chen L. Wang H. Xu J. Shen X. Yao L. Zhu L. Zeng Z. Zhang H. Chen H. 2011 Controlling Reversible Elastic Deformation of Carbon Nanotube Rings. 133 25 9654 9657 - 18.
Komatsu N. Shimawaki T. Aonuma S. Kimura T. 2006 Ultrasonic isolation of toroidal aggregates of single-walled carbon nanotubes. 44 10 2091 2093 - 19.
Guo A. Fu Y. Guan L. Zhang Z. Wu W. Chen J. Shi Z. Gu Z. Huang R. Zhang X. 2007 Spontaneously Formed Closed Rings of Single-Wall Carbon Nanotube Bundles and Their Physical Mechanism. 111 9 3555 3559 - 20.
Colomer J. F. Henrard L. Flahaut E. Van Tendeloo G. Lucas A. A. Lambin P. 2003 Rings of Double-Walled Carbon Nanotube Bundles. 3 5 685 689 - 21.
Yu H. Zhang Q. Luo G. Wei F. 2006 Rings of triple-walled carbon nanotube bundles. 89 22 223106 - 22.
Dunlap B. I. 1992 Connecting carbon tubules. 46 3 1933 1936 - 23.
Itoh S. Ihara S. Kitakami J. I. 1993 Toroidal form of carbon C360. 47 3 1703 1704 - 24.
Ihara S. Itoh S. Kitakami J. I. 1993 Toroidal forms of graphitic carbon. 47 19 12908 12911 - 25.
Itoh S. Ihara S. 1993 Toroidal forms of graphitic carbon II. Elongated tori. 48 11 8323 8328 - 26.
Kirby E. C. Mallion R. B. Pollak P. 1993 Toroidal polyhexes. 89 12 1945 1953 - 27.
Liu L. Jayanthi C. S. Wu S. Y. . 2001 Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations 64 3 033412 - 28.
Liu L. Guo G. Y. Jayanthi C. S. Wu S. Y. 2002 Colossal Paramagnetic Moments in Metallic Carbon Nanotori. 88 21 217206 - 29.
Hod O. Rabani E. Baer R. 2003 Carbon nanotube closed-ring structures 67 19 195408 - 30.
Cox B. J. Hill J. M. 2007 New Carbon Molecules in the Form of Elbow-Connected Nanotori. 111 29 10855 10860 - 31.
Baowan D. Cox B. J. Hill J. M. 2008 Toroidal molecules formed from three distinct carbon nanotubes. 44 2 515 527 - 32.
Liu L. Zhang L. Gao H. Zhao J. 2011 Structure, energetics, and heteroatom doping of armchair carbon nanotori. 49 13 4518 4523 - 33.
Klein D. J. Seitz W. A. Schmalz T. G. 1986 Icosahedral symmetry carbon cage molecules. 323 6090 703 706 - 34.
Itoh S. Ihara S. 1994 Isomers of the toroidal forms of graphitic carbon. 49 19 13970 13974 - 35.
Nagy C. Nagy K. Diudea M. 2009 Elongated tori from armchair DWNT. 45 2 452 459 - 36.
László I. Rassat A. 2001 Toroidal and spherical fullerene-like molecules with only pentagonal and heptagonal faces. 84 1 136 139 - 37.
Ihara S. Itoh S. 1995 Helically coiled and toroidal cage forms of graphitic carbon. 33 7 931 939 - 38.
Taşcı E. Yazgan E. Malcıoğlu O. B. Erkoç Ş. 2005 Stability of Carbon Nanotori under Heat Treatment: Molecular-Dynamics Simulations. 13 2 147 154 - 39.
Chen C. Chang J. G. Ju S. P. Hwang C. C. 2011 Thermal stability and morphological variation of carbon nanorings of different radii during the temperature elevating process: a molecular dynamics simulation study. 13 5 1995 2006 - 40.
Yang L. Chen J. Dong J. 2004 Stability of single-wall carbon nanotube tori 241 6 1269 1273 - 41.
Feng C. Liew K. M. 2009 Energetics and structures of carbon nanorings 47 7 1664 1669 - 42.
Liu P. Zhang Y. W. Lu C. . 2005 Structures and stability of defect-free multiwalled carbon toroidal rings. 113522 - 43.
Han J. 1998 Energetics and structures of fullerene crop circles. 282 2 187 191 - 44.
Meunier V. Lambin P. Lucas A. A. 1998 Atomic and electronic structures of large and small carbon tori. 57 23 14886 14890 - 45.
Chen N. Lusk M. T. van Duin A. C. T. Goddard W. A. I. I. I. 2005 Mechanical properties of connected carbon nanorings via molecular dynamics simulation. 72 8 085416 - 46.
Çağin T. Gao G. Goddard I. I. I. W. A. 2006 Computational studies on mechanical properties of carbon nanotori. 30 4 221 229 - 47.
Feng C. Liew K. M. 2009 A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension 47 15 3508 3514 - 48.
Feng C. Liew K. M. 2010 Buckling Behavior of Armchair and Zigzag Carbon Nanorings. 7 10 2049 2053 - 49.
Zheng M. Ke C. 2010 Elastic Deformation of Carbon-Nanotube Nanorings. 6 15 1647 1655 - 50.
Zheng M. Ke C. 2011 Mechanical deformation of carbon nanotube nano-rings on flat substrate. 109 7 074304 074310 - 51.
Saito R. Dresselhaus G. Dresselhaus M. S. 1998 Physical properties of carbon nanotubes London Imperial College Press - 52.
Zhenhua Z. Zhongqin Y. Xun W. Jianhui Y. Hua Z. Ming Q. Jingcui P. 2005 The electronic structure of a deformed chiral carbon nanotorus. 17 26 4111 4120 - 53.
Ceulemans A. Chibotaru L. F. Bovin S. A. Fowler P. W. 2000 The electronic structure of polyhex carbon tori. 112 9 4271 4278 - 54.
Liu C. P. Ding J. W. 2006 Electronic structure of carbon nanotori: the roles of curvature, hybridization, and disorder. 18 16 4077 4084 - 55.
Oh D. H. Mee Park. J. Kim K. S. 2000 Structures and electronic properties of small carbon nanotube tori. 62 3 1600 1603 - 56.
Yazgan E. Taşci E. Malcioğlu O. B. Erkoç Ş. 2004 Electronic properties of carbon nanotoroidal structures. 681 1-3 231 234 - 57.
Wu X. Zhou R. Yang J. Zeng X. C. 2011 Density-Functional Theory Studies of Step-Kinked Carbon Nanotubes. 115 10 4235 4239 - 58.
Haddon R. C. 1997 Electronic properties of carbon toroids 388 6637 31 32 - 59.
Rodríguez-Manzo J. A. López-Urías F. Terrones M. Terrones H. 2004 Magnetism in Corrugated Carbon Nanotori: The Importance of Symmetry, Defects, and Negative Curvature. 4 11 2179 2183 - 60.
Lin M. F. Chuu D. S. 1998 Persistent currents in toroidal carbon nanotubes. 57 11 6731 6737 - 61.
Latil S. Roche S. Rubio A. 2003 Persistent currents in carbon nanotube based rings. 67 16 165420 - 62.
Shyu F. L. Tsai C. C. Chang C. P. Chen R. B. Lin M. F. 2004 Magnetoelectronic states of carbon toroids. 42 14 2879 2885 - 63.
Margańska M. Szopa M. Zipper E. 2005 Aharonov-Bohm effect in carbon nanotubes and tori. 242 2 285 290 - 64.
Zhang Z. H. Yuan J. H. Qiu M. Peng J. C. Xiao F. L. 2006 Persistent currents in carbon nanotori: Effects of structure deformations and chirality. 99 10 104311 - 65.
Tsai C. C. Shyu F. L. Chiu C. W. Chang C. P. Chen R. B. Lin M. F. 2004 Magnetization of armchair carbon tori 70 7 075411 - 66.
Liu C. P. Chen H. B. Ding J. W. 2008 Magnetic response of carbon nanotori: the importance of curvature and disorder. 20 1 015206 - 67.
Liu C. P. Xu N. 2008 Magnetic response of chiral carbon nanotori: The dependence of torus radius. 403 17 2884 2887 - 68.
Zhang Z. Li Q. 2010 Combined Effects of the Structural Deformation and Temperature on Magnetic Characteristics of the Single-walled Chiral Toroidal Carbon Nanotubes. 19 3 423 426 - 69.
Rodríguez-Manzo J. A. López-Urías F. Terrones M. Terrones H. 2007 Anomalous Paramagnetism in Doped Carbon Nanostructures. 3 1 120 125 - 70.
Castillo-Alvarado F. d. L. Ortíz-López J. Arellano J. S. Cruz-Torres A. 2010 Hydrogen Storage on Beryllium-Coated Toroidal Carbon Nanostructure C120 Modeled with Density Functional Theory. 72 188 195 - 71.
Hilder T. A. Hill J. M. 2007 Orbiting atoms and C60 fullerenes inside carbon nanotori. 101 6 64319 - 72.
Lusk M. T. Hamm N. 2007 Ab initio study of toroidal carbon nanotubes with encapsulated atomic metal loops. 76 12 125422 - 73.
Mukherjee B. Maiti P. K. Dasgupta C. Sood A. K. 2010 Single-File Diffusion of Water Inside Narrow Carbon Nanorings. 4 2 985 991 - 74.
Koós A. A. Ehlich R. Horváth Z. E. Osváth Z. Gyulai J. Nagy J. B. Biró L. P. 2003 STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene 23 1-2 275 278 - 75.
Saveliev A. V. Merchan-Merchan W. Kennedy L. A. 2003 Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. 135 1-2 27 33 - 76.
Bai J. B. Hamon A. L. Marraud A. Jouffrey B. Zymla V. 2002 Synthesis of SWNTs and MWNTs by a molten salt (NaCl) method 365 1-2 184 188 - 77.
Ajayaghosh A. Vijayakumar C. Varghese R. George S. J. 2006 Cholesterol-Aided Supramolecular Control over Chromophore Packing: Twisted and Coiled Helices with Distinct Optical, Chiroptical, and Morphological Features. 118 3 470 474 - 78.
Yamamoto T. Fukushima T. Aida T. Shimizu T. 2008 Self-Assembled Nanotubes and Nanocoils from ss-Conjugated Building Blocks. 220 1 27 - 79.
Lujun P. Hayashida T. Mei Z. Nakayama Y. 2001 Field emission properties of carbon tubule nanocoils. 40 3B L235 L237 - 80.
Jining X. Mukhopadyay K. Yadev J. Varadan V. K. 2003 Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes. 12 5 744 748 - 81.
Hou H. Jun Z. Weller F. Greiner A. 2003 Large-Scale Synthesis and Characterization of Helically Coiled Carbon Nanotubes by Use of Fe(CO)5 as Floating Catalyst Precursor. 15 16 3170 3175 - 82.
Zhong D. Y. Liu S. Wang E. G. 2003 Patterned growth of coiled carbon nanotubes by a template-assisted technique. 83 21 4423 4425 - 83.
Tang N. Wen J. Zhang Y. Liu F. Lin K. Du Y. 2010 Helical Carbon Nanotubes: Catalytic Particle Size-Dependent Growth and Magnetic Properties. 4 1 241 250 - 84.
Lau K. T. Lu M. Hui D. 2006 Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. 37 6 437 448 - 85.
Fejes D. Hernádi K. 2010 A Review of the Properties and CVD Synthesis of Coiled Carbon Nanotubes. 3 4 2618 2642 - 86.
Shaikjee A. Coville N.J. 2012 The synthesis, properties and uses of carbon materials with helical morphology. 3 3 195 223 - 87.
Fonseca A. Hernadi K. Nagy J. B. Lambin P. Lucas A. A. 1996 Growth mechanism of coiled carbon nanotubes 77 1-3 235 242 - 88.
Pan L. J. Zhang M. Nakayama Y. 2002 Growth mechanism of carbon nanocoils. 91 12 10058 10061 - 89.
Chen X. Yang S. Takeuchi K. Hashishin T. Iwanaga H. Motojiima S. 2003 Conformation and growth mechanism of the carbon nanocoils with twisting form in comparison with that of carbon microcoils. 12 10-11 1836 1840 - 90.
Bandaru P. R. Daraio C. Yang K. Rao A. M. 2007 A plausible mechanism for the evolution of helical forms in nanostructure growth 101 9 094307 - 91.
Dunlap B. I. 1994 Relating carbon tubules. Physical Review B49 8 5643 5651 - 92.
Fonseca A. Hernadi K. Nagy J. b. Lambin P. Lucas A. A. 1995 Model structure of perfectly graphitizable coiled carbon nanotubes. 33 12 1759 1775 - 93.
Ihara S. Itoh S. Kitakami J. i. 1993 Helically coiled cage forms of graphitic carbon. 48 8 5643 5647 - 94.
Setton R. Setton N. 1997 Carbon nanotubes: III. Toroidal structures and limits of a model for the construction of helical and S-shaped nanotubes 35 4 497 505 - 95.
Akagi K. Tamura R. Tsukada M. Itoh S. Ihara S. 1995 Electronic Structure of Helically Coiled Cage of Graphitic Carbon. 74 12 2307 2310 - 96.
Akagi K. Tamura R. Tsukada M. Itoh S. Ihara S. 1996 Electronic structure of helically coiled carbon nanotubes: Relation between the phason lines and energy band features. 53 4 2114 2120 - 97.
Biro L. P. Mark G. I. Lambin P. 2003 Regularly coiled carbon nanotubes 2 4 362 367 - 98.
Liu L. Gao H. Zhao J. Lu J. 2010 Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations 5 3 478 483 - 99.
Zhong-can O. Y. Su Z. B. Wang C. L. 1997 Coil Formation in Multishell Carbon Nanotubes: Competition between Curvature Elasticity and Interlayer Adhesion. 78 21 4055 4058 - 100.
Volodin A. Ahlskog M. Seynaeve E. Van Haesendonck C. Fonseca A. Nagy J. B. 2000 Imaging the Elastic Properties of Coiled Carbon Nanotubes with Atomic Force Microscopy. 84 15 3342 3345 - 101.
Hayashida T. Pan L. Nakayama Y. 2002 Mechanical and electrical properties of carbon tubule nanocoils. 323 1-4 352 353 - 102.
Chen X. Zhang S. Dikin D. A. Ding W. Ruoff R. S. Pan L. Nakayama Y. 2003 Mechanics of a Carbon Nanocoil. 3 9 1299 1304 - 103.
Huang W. M. 2005 Mechanics of coiled nanotubes in uniaxial tension 408 1-2 136 140 - 104.
Neng-Kai C. Shuo-Hung C. 2008 Determining Mechanical Properties of Carbon Microcoils Using Lateral Force Microscopy. 7 2 197 201 - 105.
Poggi M. A. Boyles J. S. Bottomley L. A. Mc Farland A. W. Colton J. S. Nguyen C. V. Stevens R. M. Lillehei P. T. 2004 Measuring the Compression of a Carbon Nanospring. 4 6 1009 1016 - 106.
Fonseca A. F. d. Galvão D. S. 2004 Mechanical Properties of Nanosprings. 92 17 175502 - 107.
Fonseca A. F. d. Malta C. P. Galvão D. S. 2006 Mechanical properties of amorphous nanosprings. 17 22 5620 5626 - 108.
Coluci V. R. Fonseca A. F. Galvão D. S. Daraio C. 2008 Entanglement and the Nonlinear Elastic Behavior of Forests of Coiled Carbon Nanotubes. 100 8 086807 - 109.
Ghaderi S. H. Hajiesmaili E. 2010 Molecular structural mechanics applied to coiled carbon nanotubes. 55 0 344 349 - 110.
Kaneto K. Tsuruta M. Motojima S. 1999 Electrical properties of carbon micro coils. 103 1-3 2578 2579 - 111.
Ebbesen T. W. Lezec H. J. Hiura H. Bennett J. W. Ghaemi H. F. Thio T. 1996 Electrical conductivity of individual carbon nanotubes. 382 6586 54 56 - 112.
Chiu H. S. Lin P. I. Wu H. C. Hsieh W. H. Chen C. D. Chen Y. T. 2009 Electron hopping conduction in highly disordered carbon coils. 47 7 1761 1769 - 113.
Tang N. Kuo W. Jeng C. Wang L. Lin K. Du Y. 2010 Coil-in-Coil Carbon Nanocoils: 11 Gram-Scale Synthesis, Single Nanocoil Electrical Properties, and Electrical Contact Improvement. 4 2 781 788 - 114.
Fujii M. Matsui M. Motojima S. Hishikawa Y. 2002 Magnetoresistance in carbon micro-coils obtained by chemical vapor deposition. 409 1 78 81 - 115.
Liu L. Gao H. Zhao J. Lu J. 2011 Quantum conductance of armchair carbon nanocoils: roles of geometry effects. 54 5 841 845 - 116.
Motojima S. Chen X. Yang S. Hasegawa M. 2004 Properties and potential applications of carbon microcoils/nanocoils. 13 11-12 19895 1992 - 117.
Volodin A. Buntinx D. Ahlskog M. Fonseca A. Nagy J. B. Van Haesendonck C. 2004 Coiled Carbon Nanotubes as Self-Sensing Mechanical Resonators. 4 9 1775 1779 - 118.
Bell D. J. Sun Y. Zhang L. Dong L. X. Nelson B. J. Grützmacher D. 2006 Three-dimensional nanosprings for electromechanical sensors. 130-131 0 54 61 - 119.
Kato Y. Adachi N. Okuda T. Yoshida T. Motojima S. Tsuda T. 2003 Evaluation of induced electromotive force of a carbon micro coil. 42 8 5035 5037 - 120.
Shaoming Y. Xiuqin C. Aoki H. Motojima S. 2006 Tactile microsensor elements prepared from aligned superelastic carbon microcoils and polysilicone matrix. 15 3 687 694 - 121.
Greenshields M. W. Hummelgen I. A. Mamo M. A. Shaikjee A. Mhlanga S. D. van Otterlo W. A. Coville N. J. 2011 Composites of Polyvinyl Alcohol and Carbon (Coils, Undoped and Nitrogen Doped Multiwalled Carbon Nanotubes) as Ethanol, Methanol and Toluene Vapor Sensors. 11 11 10211 10218 - 122.
Lau K. t. Lu M. Liao K. 2006 Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites. 37 10 18375 18405 - 123.
Yoshimura K. Nakano K. Miyake T. Hishikawa Y. Motojima S. 2006 Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix 44 13 2833 2838 - 124.
Li X. F. Lau K. T. Yin Y. S. 2008 Mechanical properties of epoxy-based composites using coiled carbon nanotubes. 68 14 2876 2881 - 125.
Sanada K. Takada Y. Yamamoto S. Shindo Y. 2008 Analytical and Experimental Characterization of Stiffness and Damping in Carbon Nanocoil Reinforced Polymer Composites. 2 12 1517 1527 - 126.
Katsuno T. Chen X. Yang S. Motojima S. Homma M. Maeno T. Konyo M. 2006 Observation and analysis of percolation behavior in carbon microcoils/silicone-rubber composite sheets. 88 23 232115 232113 - 127.
Yoshimura K. Nakano K. Miyake T. Hishikawa Y. Kuzuya C. Katsuno T. Motojima S. 2007 Effect of compressive and tensile strains on the electrical resistivity of carbon microcoil/silicone-rubber composites. 45 10 1997 2003 - 128.
Nakamatsu K. Igaki J. Nagase M. Ichihashi T. Matsui S. 2006 Mechanical characteristics of tungsten-containing carbon nanosprings grown by FIB-CVD. 83 4-9 808 810 - 129.
Bi H. Kou K. C. Ostrikov K. Yan L. K. Wang Z. C. 2009 Microstructure and electromagnetic characteristics of Ni nanoparticle film coated carbon microcoils. 478 1-2 796 800 - 130.
Zhang G. Y. Jiang X. Wang E. G. 2004 Self-assembly of carbon nanohelices: Characteristics and field electron emission properties. 84 14 2646 2648 - 131.
Wu X. L. Liu Q. Guo Y. G. Song W. G. 2009 Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. 11 7 1468 1471 - 132.
Raghubanshi H. Hudson M. S. L. Srivastava O. N. 2011 Synthesis of helical carbon nanofibres and its application in hydrogen desorption. 36 7 4482 4490 - 133.
Motojima S. 2008 Development of ceramic microcoils with 3D-herical/spiral structures. 116 1357 921 927 - 134.
Motojima S. Hoshiya S. Hishikawa Y. 2003 Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands. 41 13 2658 2660