There is a looming threat over current methods of data encryption through advances in quantum computation. Interestingly, this potential threat can be countered through the use of quantum resources such as coherent superposition, entanglement and inherent randomness. These, together with non-clonability of arbitrary quantum states, offer provably secure means of sharing encryption keys between two parties. This physically assured privacy is however provably secure only in theory but not in practice. Device independent approaches seek to provide physically assured privacy of devices of untrusted origin. The quest towards realization of such devices is predicated on conducting loop-hole-free Bell tests which require the use of certified quantum random number generators. The experimental apparatuses for conducting such tests themselves use non-ideal sources, detectors and optical components making such certification extremely difficult. This expository chapter presents a brief overview (not a review) of Device Independence and the conceptual and practical difficulties it entails.
Part of the book: Topics on Quantum Information Science